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“Black Box” View
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Key DSP Operations

*  Filtering « Transformation into another domain
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*  Modulation and demodulation « Correlation of two signals
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« Signal generation, frequency synthesis
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Discrete-Time vs Continuous-Time

« Continuous-time signals are functions of a continuous-valued independent
variable t.

« They exist at all values of t.

\4
—_

X,(t) 0

» By contrast, discrete-time signals are functions of an integer-valued index (eg n, m, k)
+ The signals have no meaning for non-integer values of the independent variable.

x[-3] 1]
/
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«  We will try to follow the convention of representing a continuous-time signal with
(), eg x(t), and discrete-time signals with [], eg x/k].
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Elementary Discrete-Time Signals

Unit impulse
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Unit step
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The unit step and unit impulse are related as follows

u[n]zzn:é‘(n—k) o[n]=ul[n]—uln —1]
k=0
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Less-Elementary Discrete-Time Signals

Sinusoid

x[n]=sm(w,n+ @)

Note that @, must be a
rational multiple of 7 for
x[n] to be periodic.

Real Exponential

x[n]=a"

C-T equivalent:

x(t)=e
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Less-Elementary Discrete-Time Signals (cont)

Complex Exponential

_ ‘ ¢ = phase
x[n]=a" where a=el? .07  w= frequency
o = damping

e x[n]=e/? e THI = % cos(w,n + @)+ jsin(w,n +@)]
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Discrete-Time Frequency Units

Consider the continuous-time sinusoid with continuous-time frequency f,
x,(t)=A-cos(2xnf.t)=A-cos( Q1)

Sampling this at intervals T (=1/F;) results in the discrete-time sequence

x{n]=A-codQ,.Tn)

Q 270
= A-cod =€ .n|=A4-cog %€ .,
Fy Qg

= A-codwy -n)
where, 5 o
WT = n_ _2nn o a)d:27z- c_Q.T
FS QS QS

The units of the discrete-time frequency w, are radians per sample, or simple

radians, with range

or
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Discrete-Time Frequency Units (cont)

 How would we determine the continuous-time frequency associated with the
discrete-time sequence below?

« If we are not given the sampling frequency, we can do no better than to
determine the frequency in terms of cycles/sample. In this example, each
sinusoid has 10 samples, so the discrete-time frequency is 0.1 cycles/sample.

« Examples

Continuous-time Sampling Discrete-time
Cycles/sec | Radians/sec | frequency | Cycles Radians
100Hz 2007 1000Hz 0.1 /5
1Hz 271 2Hz 0.5 T
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Representing Discrete-Time Systems

Consider the following block diagram

x[n-1]

x[n] — UbD |+ | UD x[n-2]
. l—O.S

y[n]

—

« The output y[n] difference
equation is

y[n]=x[n]-1.5x[n —-1]-0.5x[n - 2]
« To compute the impulse response,
we make x/n] a delta function, ie
x[0]=1
x[1]=0

Beam Stability at Synchrotron Light Sources

So,
h[0]= x[0]-1.5x[-1]—-0.5x[-2]=1
h[1]= x[1]-1.5x[0]—0.5x[-1]=1.5
h[2]=x[2]—-1.5x[1]—0.5x[0 ]= —0.5
h[3]=x[3]-1.5x[2]—0.5x[1] =

The impulse response sequence is
therefore

h[n]={,-1.5,-0.5}

This is a Finite Impulse Response
(FIR) system.
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Recursive Systems

» The following system is recursive (it uses past output values in the computation
of the present output value).

« The difference equation is

xIn| ub x[n-1] y[n] = 0.5x[n]+0.25x[n —1]+0.5y[n —1]
05 W 0.25
 The impulse response is
2 yinl h[0] = 0.55[0]+0.255[~1]+0.5y[1]
0.5 L J ~0.5
yin-1] ub h[1]=0.56[1]+0.256[0]+0.5y[0]
=0.5
First nine points of the impulse response h[2]=0.56[2]+0.256[1]+ 0.5 y[1]
05 ¢ o =0.25
0.4 :
ol h[k]=0.5y[k —1]
0.2}
o1} « This is an Infinite Impulse
. [ e o 0 o Response (lIR) system.
0 2 4 6 5
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General Description of LTI Systems

« Al LTI systems can always be represented by constant-coefficient difference
equations of the form

M- N-1
yinl= Yapxin—kl- X bgyln—k]
k=0 k=1

» The two common realizations of this general difference equation are

Direct-Form Canonical Form

y[n] X[n] y[n]
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Discrete-Time Convolution

* Consider the system described by the following block diagram
Xn] 1 UD || UD uD
g a4 las

« The difference equation is

y[n]

y[n]=apx[n]+ax[n—1]+a,x[n —2]+ ax[n —3]

* And from previous discussion, we can deduce that the impulse response
sequence is

h[n]={ag,a1,a2,a3}
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Discrete-Time Convolution (cont)

Since in this case, the impulse response sequence and the system coefficients are one and
the same, we can replace the coefficients by the impulse response sequence

xin] —— UD | | UD uD
h[0] h[1] h[2] lh[3]

) yIn]

The difference equation is now given by
yln]= h{0]x[n]+ hl]x[n —1]+ A[2]x[n — 2]+ h[3]x{n - 3]

Or equivalently 3
yn]= 2 hlk]x{n—k]
k=0

This is the convolution equation for a general 4-coefficient FIR system
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Discrete-Time Convolution Example

« Convolve the following input and impulse response sequences

x[n]={1,-1,2,3,0,0,...} h[n]=1{0.5,1,1,0.5}

} Ime xin] — | UD || UD

x(3)  x(2) x(0)

0.5 1
3

il Vnl= 2 hlk]x[n— k]
k=0

Computing the output point-by-point, we get $[0]=0.5(1)=0.5

J[1]=0.5(=1) +1(1) = 0.5
1[2]1=0.5(2) + 1(-1) +1(1) =1

[

[

x[n] [
0 T I ‘ 1[3]=0.53) +1(2) + 1(=1) + 0.5(1) = 3

* [

[

y[4]=0.5(0) +1(3) +1(2) + 0.5(-1) = 4.5
hin] 911
0

J[5]=0.5(0) +1(0) +1(3) + 0.5(2) = 4
y[nj 1[6]=0.5(0)+1(0) +1(0) +0.5(3) = 1.5
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lIR Convolution Example

0

. : : H0]=(0.9)" =1

Convolve the following signal and causal impulse response 01=( )1
H[1]=(0.9)' =0.9

/ H[2]=(0.9)2 =0.81

x[n]={2.3,1,0,...} h[n]=(0.9)"

yinl= X hlk]x[n—k]=

§(0.9)k x[n—k]
k —

o0

k

Now x/n] is non-zero only for 0 <n <2, and h[n] is non-zero only when n >0, so
we only need consider the cases when

0<(n-k)<2 and k>0
For n=0, only k=0 is valid, so we get

01=(0.9)"x[0] = (1)x[0] = 2
For n=1, both k=0, and k=1 satisfy the limits, so

W[11= (0.9) x(1) + (0.9 x[0] = (1)(3) + (0.9)(2) = 4.8

Beam Stability at Synchrotron Light Sources USPAS 2003, John Carwardine Glen Decker and Bob Hettel
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lIR Convolution Example (cont)

* For n=2, both k=0, k=1 and k=2 are valid, so
1[2]1=(0.9)Y X[2]+ (0.9)  x[1]+ (0.9) x[0] = (1)(1) + (0.9)(3) + (0.81)(2) = 5.32
For n=3, we find that k=1, k=2 and k=3 are valid, so

Y31 = (0.9) X[2]+ (0.9)% x[1]+ (0.9)3 x[0] = (0.9)(1) + (0.81)(3) + (0.729)(2) = 4.788
» The first 20 points are plotted below

0.5
04
03

02 ¢

i

10
Time-step
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Z-Transforms

« The Z-transform is the discrete-time equivalent of the Laplace Transform.

< —k
Definition X(z)= Xxlk]z
k=—00

« The z -1 operator is the equivalent of a unit (one-sample) delay.

Example 1 k

x[k]=| 2 | ulk]

2
o (1Y
> X(2)= X |- z
k=0\2
1 . .
= X(z) = T Z‘ > 0.5 (using Taylor series)
1-05z
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Transfer functions in the Z-domain

*  FIR example...

Difference equation

x[n-1]
x[n] UD [ | UD || xIn2] yln]=x[n]—-1.5x[n—1]-0.5x[n - 2]
1 l 0.5
— yIn]
Z-transform of d.e. Y(z)=X(2)-1 .SZ_IX(Z) — O.SZ_ZX(Z)
Y(z _ _
Transfer function (2) =1-1.5z 1_ 0.5z 2
X(2)
Beam Stability at Synchrotron Light Sources USPAS 2003, John Carwardine Glen Decker and Bob Hettel
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Transfer functions in the Z-domain

* |IR example...

Difference equation

x[n] ub x[n-1]
0.5 0.25 y[n]=0.5x[n]+0.25x[n—1]+0.5y[n —1]
2 yin]
9
y[n-1] —
Z-transform of d.e. Y(z)=0.5X(z2)+ O.ZSZ_IX(Z) + O.SZ_IY(Z)

Y(z) 0.5+025z7
X(z)  1-05z"1

Transfer function

Beam Stability at Synchrotron Light Sources USPAS 2003, John Carwardine Glen Decker and Bob Hettel
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Some common Z-transform pairs

Sequence Z-transform ROC
O[K] 1 All values of z
1
ulk] 1 2>1
: 1 2>la
z| > |a
a"ulk] 1— gz
k 1-(rcosm )z_1
(r" cos wok)ulk] T 9 z[>r
1-(2rcoswgy)z " +r°z
- -1
, rsin g )z
¥ sin wok)ulk] ( 0) 5 z|>|al

1—-(2rcos a)())z_1 412z

Beam Stability at Synchrotron Light Sources
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Inverse z-transforms

» Use partial fraction expansions to generate sum of terms that can be inverted by

inspection
1 1
Example 1- 3 z
X(z)= T 1 5
I+—z "——z
6 6
1- ! 27
X(Z) _ 1 3 1 _ 21/ 3 n Il
I+ -z =222 142zt 1=
3 2 3 2
k k
2( 1 1
Soxlk]l==|—=| ulk]-| = | ulk
[]3(3)[](2)[]
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Averager Block Diagram (DSP Viewpoint)

X[n-1] x[n-2] x[n-3]
1-sample 1-sample 1-sample
X[n] delay delay delay
1/4
y[n]

« This can be described with the following difference equation
y[n]=0.25- (x[n] + x[n—1]+ x[n—2]+ x[n - 3])

*  Or with the following z-transform transfer function

Hlp(Z):

Beam Stability at Synchrotron Light Sources USPAS 2003, John Carwardine Glen Decker and Bob Hettel
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Frequency response
« Evaluate frequency response by setting

W
Z=€J

Then the frequency response of the 4-point averager is:

| - fe e -jte -je
=—e 2 |e?2 +e? l+e 2 +e 2

COS—0)+COSEO)
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Frequency response of 4-point averager

H; (e/?)=¢ ﬂaﬂz-{cos—wﬂ:os—}
AS 2 2

Magnitude Response Phase Response
0
1
—45
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:
8 g
5 0.5 g -135
b g
¥ R
g $ 180
b L
\ 225
0 -270
0 /4 /2 3n/4 bis 0 n/4 n/2 3n/4 T
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